
1

XPT, a XML general-
purpose preprocessing tool

Bram Latupeirissa
Version 0.1.1 (CVS xpt.xml 1.42 2014/04/13)

2014-04-16

Table of Contents
1. Introduction .. 1
2. Functionality .. 2
3. XPT command-line options ... 2
4. Startup and environment ... 3

4.1. environment ... 3
4.2. start-up file .. 3

5. Command syntax .. 3
6. Built-in commands .. 3

6.1. XML bindings .. 3
6.2. Variable substitution .. 6
6.3. Python bindings .. 6
6.4. XPT library ... 8

7. XPT development .. 8
7.1. Sources and build-system ... 8
7.2. Documentation ... 9

1. Ideas and things todo ... 9
2. Pointers ... 9
3. Manpages ... 10

1. Introduction
Somewhere in 2010 I had a project where DocBook XML documents needed to be enriched with data coming from
various, non-XML sources. The idea was to have scripting insert DocBook elements into a DocBook template.
There were two options, first write a program to convert non-XML data into DocBook XML elements and second
write a more generic program to insert DocBook XML elements into the original source. XPT (xml-xpt) does this.
It replaces XML processing instructions with target xpt in an XML input file.

This way a library can be setup with (user-) predefined functions.

This document is also available in Acrobat pdf format at http://xml-xpt.sourceforge.net/docu/xpt.pdf.

http://xml-xpt.sourceforge.net/docu/xpt.pdf

XPT, a XML general-pur-
pose preprocessing tool

2

2. Functionality
This paragraph presents a global picture about what functionality xpt delivers and how and where to use it. Some
use cases.

A DocBook use-case
DocBook is a XML vocabulary (http://en.wikipedia.org/wiki/DocBook) for writing books and articles. Often a
make tool-chain is used, where a DocBook XML source is transformed into a certain format, e.g. HTML or PDF.
A place where, with every version of a document, manual action is required: releaseinfo and pubdate.

3. XPT command-line options
The following command-line options are recognised by xpt:

xpt [-h] [-k] [-c cmd] [-F] [-i infile] [-I dir] [-n] [-o outfile] [-s cmd] [-t stylesheet] [-T pi-name]
[-f all-func] [-P init-cmd] [-D name=[=[value]]] [-x] [-v] [-V]

-c cmd enter command mode. Currently the following values are allowed:

ppi process processing-instructions. this is the default value.

version show version information. same as the -V.

-D name[=value] define variable name optionally with value value.

-f all-func register a single function for all selected XML elements. Usually needs -P option to get
function installed.

-F use fancy XML output format for better readability.

-h show some help.

-i infile read XML from infile. If not specified, standard input is assumed. If infile is
explicitly specified as - (dash), the standard input is read.

-I dir append dir to list search directories of xpt and embedded Python engine.

-k keep temporary files

-n do not execute external commands

-o outfile send output to output.

Note

needs extra explanation out how the output is created. read the code.

-P init-cmd issue init-cmd command before transforming selected elements. Most often a module
is loaded using this option. This option may be used more than once.

http://en.wikipedia.org/wiki/DocBook

XPT, a XML general-pur-
pose preprocessing tool

3

-s cmd use XPath cmd in while creating output.

-t stylesheet use XSLT stylesheet in output generation

-T pi-name change name of processing-instruction target to pi-name. Default is xpt.

-x Show debug output. This option may be used more than once to increase the verbosity.

-v Be verbose.

-V Show version information.

4. Startup and environment
4.1. environment
Environment variables that are taken into account:

HOME used for locating the start-up file, see Section 4.2, “start-
up file”.

XPT_DEBUG enables debugging output (see option -x). The value of
the variable sets the debug verbosity level. This option
allows debugging of code activated during the reading
of the start-up file, see Section 4.2, “start-up file”.

TMPDIR determines the location for placement of temporary
files.

4.2. start-up file
When xpt starts it checks for the existance of a start-up file.

5. Command syntax
Syntax of the XPT processing instructions. Output redirection (string, XML node, XML nodeset). Comment

6. Built-in commands
This paragraph describes the built-in commands that come standard with xpt.

6.1. XML bindings
This paragraph describes the built-in commands that can be used with processing-instructions in the input XML
stream. User-defined commands can be created from the embedded Python engine (http://www.python.org/). Most
commands can have arguments. There are two types of arguments: positional and named arguments. EXPLAIN.
Then there is quoting: unquoted, single-quoted and double-quoted. Optionally glueing those parts together. Note
that built-in commands (currently?) have no named arguments, only positional. See the section on variable sub-
stitution Section 6.2, “Variable substitution”.

http://www.python.org/

XPT, a XML general-pur-
pose preprocessing tool

4

6.1.1. code

code NEWLINE CODE

Insert a block of executable code. Note that a NEWLINE must be after the code keyword. From that point the text
is passed to the Python interpreter. The node wil be removed from the output.

Example 1. example built-in code usage

<example-code>
<?xpt code
import libxml2
import xpt

def myFunction(nd,arg1):
 return "myFunction: nd="+nd.name+" arg1='"+arg1+"'"

xpt.registerfunction("myFunction")?></example-code>

<example-call>
<?xpt myFunction "an argument"?>
</example-call>

In the example above, the first processing-instruction using the code statement registers a new xpt function called
myFunction which is associated with the Python function with the same name. After evaluation it will be removed
from the output. In the second processing-instruction the xpt function is evaluated. It will be replaced with the
result returned by the Python function, in example Example 1, “example built-in code usage” that is the string
"myFunction: nd=xpt arg1='an argument'".

In Python a module variable __xpt_code_xmlNode__ is set to the libXML2 node containing the current code
statement. The variable is removed when the execution of the module stops.

Note

All Python functions that are called from xpt have at least one argument, i.e. a xmlNode pointer ref-
erencing the XML element from where the actual call originates. In this is the example-call element.

See also Section 6.1.6, “loadmodule”. xpt.debug

6.1.2. dumpdoc

__dumpdoc {STRING}

Debugging command which displays the current document to the standard error output, using STRING as a mes-
sage. Note that debugging output must be enabled by using option -x or environment variable.

6.1.3. dumpvars

__dumpvars {STRING}

XPT, a XML general-pur-
pose preprocessing tool

5

Debugging command which shows a list of currently defined variables to the standard error output, using STRING
as a message. Note that debugging output must be enabled by using option -x or environment variable.

6.1.4. echo

echo {STRING}

Evaluate STRING and replace the processing-instruction by the string representation.

See also Section 6.1.8, “get”.

6.1.5. error

error {STRING}

Evaluate STRING, report it on the standard error channel and stop processing of the input. No output file will be
written. The xpt process returns an exit-code of 1 to the parent process.

6.1.6. loadmodule

loadmodule MODULE

Load Python module MODULE. The node wil be removed from the output.

Example 2. example built-in loadmodule usage

<?xpt showNextPI?>

See also ???.

6.1.7. python

python {python-expression}

Replace the processing-instruction with the result of the python-expression.

6.1.8. get

get {NAME}

Replace the processing-instruction with the value of variable NAME.

Example 3. example built-in get usage

<?xpt get __hostname__?>

Evaluation of the processing-instruction above gives: pluto

Here See also Section 6.1.4, “echo”.

XPT, a XML general-pur-
pose preprocessing tool

6

6.1.9. select

select [NAME] {XPATH}

Replace the processing-instruction with the result of the XPATH expression. If NAME is given the result is saved
in a variable and the processing-instruction is removed from the output.

6.1.10. set

set NAME VALUE

Create or replace variable NAME with value VALUE. The node wil be removed from the output.

Example 4. example built-in set usage

<?xpt set var1 "**** This is var1 ****"?>

Evaluation of the processing-instruction above gives:

In the example above, var1 will have value **** This is var1 ****.

6.1.11. setmatch

CASE-like expression

6.1.12. shell

shell CMD

Replace the processing-instruction with the value of the shell command CMD.

6.1.13. warning

warning MSG

Evaluate string MSG and send it to the standard error output. The processing-instruction is removed from the output.

6.2. Variable substitution
Variable substitution: replace ${NAME} constructions with the value associated the the variable NAME. There are
shell-like quoting rules: single and double quotes have different effect.

6.3. Python bindings
This paragraph describes the XPT bindings for the Python environment.

6.3.1. xpt.debug

import xpt

XPT, a XML general-pur-
pose preprocessing tool

7

None xpt.debug();

message;

Issue a message on the debug output channel. See -x.

6.3.2. xpt.dumpvars

import xpt

None xpt.dumpvars();

message;

Write list of XPT variables on the debug output channel. See -x and Section 6.1.3, “dumpvars”.

6.3.3. xpt.error

import xpt

None xpt.error();

message;

Write a message to the standard error channel and stop processing of the input. See Section 6.1.5, “error”.

6.3.4. xpt.get

Get value of a variable. An exception is raised if the variable does not exist.

6.3.5. xpt.registerfunction

import xpt

None xpt.registerfunction(,);

name;
func;

Registers xpt function name which is associated with the Python function func. If this second parameter is not
specified, it's name is assumed to be identical to name prefixed with the name of the module from which the
registerfunction is called.

6.3.6. xpt.set

6.3.7. xpt.warning

import xpt

None xpt.warning();

XPT, a XML general-pur-
pose preprocessing tool

8

message;

Write a message to the standard error channel. See Section 6.1.13, “warning”.

6.4. XPT library
Xpt comes with extra functionality through a library of functions.

6.4.1. xpt.docbook5 - DocBook 5 functions

6.4.2. xpt.csv - CSV functions

6.4.3. Extending xpt

There are several way of extending xpt. First by pointing xpt where the Python modules are using the -I option.
A second way is by extending the library, giving you an opportunity to enter the XPT Hall of Fame.

7. XPT development
This chapter describes the various parts of the build-system.

The sources are hosted on sourceforge (http://sourceforge.net/projects/xml-xpt/).

7.1. Sources and build-system
• make use of configure to make the software more portable. currently the Makefile needs gmake.

• document dependencies: libxml2-2.7.7 (xml2-config, perl-libxml-mm.c) + sources, perl-5.8. python26-2.6.5_1
perl-libxml-mm.c) + sources, perl-5.8. python-config: python-dev

7.1.1. Ubuntu build environment

Xpt is developed under Ubuntu. Binary packages are automatically build via https://launchpad.net/xml-xpt and
currently made avaiable through a personal packaging archive (PPA).

7.1.2. FreeBSD build environment

Xpt is known to work used FreeBSD 8.1.

7.1.3. MAC OS X build environment

Xpt has been tested under MAC OS X 10.5.6.

7.1.4. MS Windows build environment

Xpt has been tested under MS Windows XP.

http://sourceforge.net/projects/xml-xpt/
https://launchpad.net/xml-xpt

XPT, a XML general-pur-
pose preprocessing tool

9

7.2. Documentation
Part of the documentation, especially the manpages, are extracted from the source code. The tools for extraction
and converting it to DocBook 5 refentry elements, are part of the standard library that comes along with the xtp
tool itself. See also xpt.embedded_manpage.embed_manpage.

1. Ideas and things todo
Here's a list of ideas and things that need to be done.

1. better/more robust implementation of xpt command parsing (see dopi() in xpt.c). goal is to make a
more complete syntax in the processing-instruction available, eg. allowing a semi-colon to separate multiple
commands, where currently multiple processing-instructions are needed. In this way the interdependence of
a group of PIs is fixed and clearly visible.

2. maybe it's possible to use namespaced xpt elements making use of a DTD to check correctness of a document.
Eg. use <xpt:date format="%Y-%m-%d"> instead of <?xpt date "%Y-%m-%d"?>

Investigate the possibility to validate the function calls make from xpt. Through processing instructions there
is hardly any checking possible. The checking done by xpt is just syntax checking. The second level of
checking could be done by the called function, but that's left to the implementor. It would be nice to have DTD
features on this level. Maybe this could be accomplished by using namespaced xpt elements as shown above.

Maybe it's a nice feature to have validation on processing-instructions. This, may need extending the XML
specification.

Maybe using libxslt extentions is a way of doing that, but i'm not certain. See http://xmlsoft.org/XSLT/
extensions.html.

3. xpt function to read in external data with conversion and selection capability. reading not ony from the filesys-
tem but also from commands and ports. watch out to make this a god-function.

4. sorting tables and lists.

5. define a logo for the project. Using Inkscape the following logo is currently proposed. The idea behind it is
that data is flowing into the program from the left, gets processed and than is flowing out on the right side.
Note that the right arrow is in fact another Xcharacter from which the right side is removed.

2. Pointers

• docbook-util, xmlmind, XMLStarlet Command Line XML Toolkit (http://xmlstar.sourceforge.net/)

http://xmlsoft.org/XSLT/extensions.html
http://xmlsoft.org/XSLT/extensions.html
http://inkscape.org/
http://xmlstar.sourceforge.net/

XPT, a XML general-pur-
pose preprocessing tool

10

• pandoc, ea sdf, xmlif ()

• asciidoc, http://www.methods.co.nz/asciidoc/

• xproc (http://xproc.org/). “XProc: An XML Pipeline Language”

• lxml (http://lxml.de/). “lxml - XML and HTML with Python”. Especially the functionality for extending XSLT
and XPath (http://lxml.de/extensions.html).

3. Manpages
This section contains manual pages which are automatically extracted from the sources. More information about
extracting manpages can be found in xpt.embedded_manpage.embed_manpage.

http://www.methods.co.nz/asciidoc/
http://xproc.org/
http://lxml.de/
http://lxml.de/extensions.html

XPT, a XML general-pur-
pose preprocessing tool

11

Name
doc_source — TEST test doc_source....

Synopsis
c3=tbl.defColumn('col2',default=1)

Description
Class to create some thing

See Also
xpt(1), python(1), xpt.docbook.table().

XPT, a XML general-pur-
pose preprocessing tool

12

Name
xpt.embedded_manpage.embed_manpage — extract embedded man-pages from source code

Synopsis
import xpt.embedded_manpage

xml = embed_manpage(nd,directory)

Description
Embed_manpage extracts Unix man-pages from sources. Why embedded documentation: See eg. http://
www.fossil-scm.org/index.html/doc/tip/www/embeddeddoc.wiki advocacy + ideas http://www.digitalmars.com/
d/1.0/ddoc.html usage, otherlinks eg. doxygen http://www.python.org/community/sigs/current/doc-sig/other-
langs/ http://docs.python.org/devguide/documenting.html http://sphinx-doc.org/markup/inline.html Arguments:
directory is a colon-separated list of directories which is searched for files holding embedded man-pages
VARIABLES Variables are set using the .set command and can be used in the text with the special %{NAME}
construction. Standard variables are __file__, __linenr__ and __null__. COMMANDS Command start with a dot
on the first position on a line. The following commands are defined: .set NAME VALUE set variable NAME to
value VALUE .setre REGEX NAME VALUE search text to match regex REGEX. REGEX must have one or more
remembered values which can be used in the NAME and/or VALUE part as $1, $2, etc. Eg.: .setre (RETURN)\s
+(VALUE) name_$1 With value: ($2) will set variable name_RETURN to hold value 'With value: (VALUE)'.
Note that the text search starts right after the .setre command.

Return value
A Python list containing LibXML2 nodes in DocBook 5 refentry format

Errors

See Also
xpt(1), python(1), xpt.docbook.docbook5_refentry().

XPT, a XML general-pur-
pose preprocessing tool

13

Name
xpt.table.table — xpt table class

Synopsis
import xpt.table

tbl = xpt.table.table(caption,rowsonly,table_name,tablegroup_name,tablebody_name,row_name,cell_name,order)
c1 = tbl.defColumn('nr.',type='auto')
c2 = tbl.defColumn('col1',format="(-%s-)")
c3 = tbl.defColumn('col2',default=1)

Description
Class to create a table in a XPT

Errors

See Also
xpt(1), python(1), xpt.docbook.table().

XPT, a XML general-pur-
pose preprocessing tool

14

Name
version — extract CVS version information from string

Synopsis
<?xpt loadmodule xpt.docbook5 ?>
<?xpt version "$Id: document.xml,v 1.2 2011-04-03 04:51:11 coder Exp $"?>

Description
The version function extracts CVS information from the supplied string which is assumed to be the value of
the CVS Id keyword. Extracted information is saved in the XPT variables __cvs_filename__, __cvs_version__,
__cvs_date__, __cvs_time__, __cvs_user__.

Return value
Nothing

Errors
In case of an error an exception is raised.

See Also
xpt(1).

XPT, a XML general-pur-
pose preprocessing tool

15

Name
xpt.debug — write out XPT debug message

Synopsis
import xpt
xpt.debug("Hello debugger")

Description
Write out a message on the debug output channel. If xpt(1) was compiled without debugging code, this command
has no effect.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.warning(), xpt.message(), warning().

XPT, a XML general-pur-
pose preprocessing tool

16

Name
xpt.message — write out XPT regular information message

Synopsis
import xpt
xpt.message("Hello debugger")

Description
Write out a message on the standard output channel.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.debug(), xpt.warning(), message().

XPT, a XML general-pur-
pose preprocessing tool

17

Name
xpt.warning — write out XPT warning message

Synopsis
import xpt
xpt.warning("Hello debugger")

Description
Write out a message on the warning output channel.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.debug(), xpt.message().

XPT, a XML general-pur-
pose preprocessing tool

18

Name
xpt.error — issue an XPT error

Synopsis
import xpt
xpt.error("This is a grave error")

Description
Write out a message on the error output channel and terminate the xpt process via the builtin error() funtions.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.warning(), xpt.message(), error().

XPT, a XML general-pur-
pose preprocessing tool

19

Name
xpt.get — get a XPT variable

Synopsis
import xpt
xpt.get(NAME)

Description
Get the value of an xpt maintained variable called NAME.

Return value
The value of the variable called NAME.

Errors
An exception is raised if incorrect parameters are passed or NAME does not exist.

See Also
xpt(1), python(1), xpt.get().

XPT, a XML general-pur-
pose preprocessing tool

20

Name
xpt.set — set a XPT variable

Synopsis
import xpt
xpt.set(NAME, VALUE)

Description
Set the xpt maintained variable NAME to the value VALUE.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.get().

XPT, a XML general-pur-
pose preprocessing tool

21

Name
xpt.dumpvars — Write out list of xpt variables

Synopsis
import xpt
xpt.dumpvars(msg)

Description
Write out the list of variables maintained by xpt.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1).

XPT, a XML general-pur-
pose preprocessing tool

22

Name
xpt.registerfunction — register a Python function to XPT

Synopsis
import xpt
xpt.registerfunction(xptname,pythonname)

Description
Register a Python function to xpt. Inside xpt the function is named xptname, the name of the Python function is
pythonname. The latter argument is optional. If not specified it will be computed using the specified xptname.

Return value
Nothing

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1).

XPT, a XML general-pur-
pose preprocessing tool

23

Name
xpt.acc_string2boolean — argument check and convert string to boolean

Synopsis
import xpt
xpt.acc_string2boolean(ARG, default=False)

Description
Check and convert ARG to a boolean value. ARG is assumed to be a string passed to a XPT registered Python
function. Note that passing a boolean value via ARG just returns it's value. Is ARG is None, the default value is
returned. Valid string values for True are "yes", "true" and "1". All other valuesa are assumed False.

Return value
A boolean value.

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.acc_string2integer().

XPT, a XML general-pur-
pose preprocessing tool

24

Name
xpt.acc_string2integer — argument check and convert string to integer

Synopsis
import xpt
xpt.acc_string2integer(ARG, default=0)

Description
Check and convert ARG to an integer value. ARG is assumed to be a string passed to a XPT registered Python
function. Note that passing a integer value via ARG just returns it's value. Is ARG is None, the default value is
returned.

Return value
An integer value.

Errors
An exception is raised if incorrect parameters are passed.

See Also
xpt(1), python(1), xpt.acc_string2integer().

XPT, a XML general-pur-
pose preprocessing tool

25

Name
loadmodule — load a Python module

Synopsis
<?xpt loadmodule MODULENAME?>

Description
The xpt builtin loadmodule command, loads a Python module MODULENAME. The processing instruction is
removed from the input.

Return value
None

See Also
xpt(1), python(1), xpt.docbook.docbook5_refentry().

XPT, a XML general-pur-
pose preprocessing tool

26

Name
code — insert Python code

Synopsis
<?xpt code
Python code inserted here
?>

Description
The xpt builtin loadmodule command, loads a Python module MODULENAME. The processing instruction is
removed from the input.

Return value
None

Errors
In the example below, a Python function is defined inside a XML processing-instruction and then called from
an other processing-instruction. The latter will get replaced by the value returned by the Python function. ::code-
start:: <?xpt code import libxml2 import xpt * def myFunction(nd,arg1): return "myFunction: nd="+nd.name+"
arg1='"+arg1+"'" xpt.registerfunction("myFunction") ?> <example-code> <?xpt myFunction "an argument"?> </
example-call> ::code-end::

See Also
xpt(1), python(1), xpt.registerfunction().

XPT, a XML general-pur-
pose preprocessing tool

27

Name
shell — start external command

Synopsis
<?xpt shell COMMAND?>

Description
The xpt builtin shell command, executes external command COMMAND and replaces the processing instruction
with the output of the command

Return value
None

See Also
xpt(1), python(1), system(3).

XPT, a XML general-pur-
pose preprocessing tool

28

Name
warning — issue a warning

Synopsis
<?xpt warning MESSAGE?>

Description
Evaluate string MESSAGE and send it to the standard error output. The processing-instruction is removed from
the output.

Return value
None

See Also
xpt(1), python(1), error().

XPT, a XML general-pur-
pose preprocessing tool

29

Name
error — issue a error

Synopsis
<?xpt error MESSAGE ?>

Description
Evaluate MESSAGE, report it on the standard error channel and stop processing of the input. No output file will
be written. The xpt process returns an exit-code of 1 to the parent process.

Return value
None

See Also
xpt(1), python(1), warning().

XPT, a XML general-pur-
pose preprocessing tool

30

Name
unlink — parent - remove the parent node

Synopsis
<?xpt unlink-parent ?>

Description
Remove the parent node and all of it's children.

Return value
None

See Also
xpt(1), python(1).

XPT, a XML general-pur-
pose preprocessing tool

31

Name
xpt — a XML preprocessor

Synopsis
xpt [-h] [-k] [-c cmd] [-F] [-i infile] [-I dir] [-n] [-o outfile] [-s cmd] [-t stylesheet] [-T pi-name] [-f all-func] [-P init-cmd] [-D name=[=[value]]] [-x] [-v] [-V]

Description
XPT is a XML preprocessor. * Python: if a Python function returns a none standard object, i.e. a string, an integer,
a LibXML2 node, etc. xpt tries to convert it to something of a known type. In case of an instance of a certain class,
a method called xpt_repr() in that class is assumed to handle this case. This method should do this conversion.
Note that the returned result of xpt_repr() is allowed to be an instance of yet an other class. Even lists of instances
are handled.

Options
-c cmd enter command mode. Currently the following values are allowed: ppi process processing-instructions.
this is the default value. version show version information. same as the -V. -D name[=value] define variable name
optionally with value value. -f all-func register a single function for all selected XML elements. Usually needs -
P option to get function installed. -F use fancy XML output format for better readability. -h show some help. -i
infile read XML from infile. If not specified, standard input is assumed. If infile is explicitly specified as - (dash),
the standard input is read. -I dir append dir to list search directories of xpt and embedded Python engine. -k keep
temporary files -n do not execute external commands -o outfile send output to output. Note: need extra explanation
how the output is created. For now read the code. -P init-cmd issue init-cmd command before transforming selected
elements. Most often a module is loaded using this option. This option may be used more than once. -s cmd use
XPath cmd in while creating output. -t stylesheet use XSLT stylesheet in output generation. -T pi-name change
name of processing-instruction target to pi-name. Default is xpt. -x Show debug output. This option may be used
more than once to increase the verbosity. -v Be verbose. -V Show version information.

Return value
None

See Also
python(1)..

